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SOLVING DIFFRACTION PROBLEMS BY METHOD
OF ELEMENTARY SCATTERERS

ALEXANDER G. KYURKCHANa AND NADEZHDA I. SMIRNOVAa∗

ABSTRACT. The method of modeling scattering characteristics of bodies with complex
geometry and structure using elementary scatterers, which together reproduce the geometry
and structure of initial object, is proposed. The efficiency of this approach is shown by a
simple example the diffraction problem on a strip.

1. Introduction

One of the Pattern Equation Method (PEM) [1] advantages is a weak dependence of the
speed and accuracy of computational algorithm on the distance between scatterers. This
fact prompted us to model scattering characteristics of complex geometry bodies by solv-
ing wave diffraction problem on the group of bodies with more simple geometry, which
together reproduce the original complex object. Calculations have proven the efficiency
of such approach [2]. Natural generalization of this idea is to substitute a scatterer with
complex geometry and structure, for example a non homogeneous magneto-dielectric scat-
terer, by the group of simple homogeneous bodies, for example spheres (or circles in two
dimensional case), which sizes are small in comparison to the wavelength. Note, that the
problem of wave scattering on ensemble of spherical particles was treated earlier based on
T-matrix method [3] (see also [4]). It is expedient to use PEM in this approach, because the
solution of corresponding problem diffraction problem on a group of N bodies with small
wave sizes could be obtained analytically [1] by reducing the problem to an algebraic
system of N equations.

2. Formulation of the problem and its solution

Let us consider a realization of this idea using the example of diffraction on a perfectly
conductive cylindrical scatterers, when electric intensity vectors of incident and scattered
fields has single component EZ , oriented along generatrix of these cylindrical bodies. In
this case problem becomes two-dimensional and Dirichlet boundary condition is satis-
fied on the boundaries of cylindrical bodies. Lets write PEM integral-operator system for
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diffraction problem on N bodies
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In this system gj(ϕ) is a scattering pattern of body j [1], i.e. a function, related to body j
scattered field by the following asymptotic equation
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rj , ϕj - polar coordinates of viewpoint from the center of body j,
rj = ρj(ϕj) - equation of body j cross-section,
k⃗r⃗0j = kr0j cos(ϕ0 − ϕ0j), where r0j , ϕ0j - body j center coordinates from common
origin, and ϕ0 - primary plane wave incident angle,
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- differential operator.

Using Fourier series expansion on Eq. 1,
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we obtain the following algebraic system relatively to coefficients cjn
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Equations system 4 is solvable by reduction method, if scatterers fall into weakly non-
convex body class and their boundaries are not intersected [1]. In this system
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Note that in [5] the problem of wave scattering by a group of parallel cylinders was reduced
to an algebraic equation system, which looks similar to system 4. However, unlike system
4, the system matrix in [5] could not be written explicitly in general case (apart from
circular cylinder case). At krlj ≫ 1 equation system 1 allows the following solution [1]

gj(ϕ;ϕ0) ∼= e−ik⃗r⃗0jg∞j (ϕ;ϕ0) +
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. System 8 allows to find unknown values gj(ϕ;ϕ0) with quite acceptable accuracy in
the range of distances between scatterers down to 0 (touching), if scatterer sizes are small
enough [1]. In case of circular cylinders the relations 5 to 7 take the following form re-
spectively
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where aj - cylinder radius. If kaj ≪ 1, then algebraic system 4, as follows from Eqs.
9-11, takes the following form (one-mode approximation)
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3. Numerical example

As an example let us consider a plane wave diffraction on a strip, which has a width
kL = 2

√
80. Lets substitute this strip by the array of 80 circular cylinders with radius

ka = 0, 1, positioned next to each other, and solve the resulting problem in one-mode
approximation. Figure 1 shows the scattering patterns of the strip (curve 1), which could
be found in [6], and circular cylinder array (curve 2). A good coincidence of these two
patterns can be seen, although we substituted infinitely thin strip by the scatterer with finite
width δ (kδ = 0, 2). Based on these calculations we can expect even more accurate results
by using similar approximation for scatterers, which are not infinitely thin.
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Figure 1. Scattrering patterns of strip (curve 1) and circular cylinder array (curve 2).
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